The Tool(s) Versus The Toolkit

Chris Mackeyl’z(g) and Mostapha Sadeghipour Roudsari'+

! Ladybug Tools, Boston, USA
{chris,mostapha}@ladybug. tools
2 Payette Associates, Boston, USA
? University of Pennsylvania, Philadelphia, USA

As the architectural practice continues into the digital age, most designers agree that
new computational technologies should be harnessed for the betterment of their
buildings and workflows. However, there are currently several competing philosophies
for how such technologies should be best integrated into the design process. Until
recently, much of today’s practice has found itself leaning toward one of two camps:
one that allows for a distributed yet disconnected approach and another that strives
toward a centralized methodology. While each philosophy has its strengths, they both
suffer from significant limitations.

Perhaps one of the clearest examples of the distributed and disconnected approach
is the current state of environmental performance software, which has seen the intro-
duction of countless new specialized tools over the last few decades. The goals of these
distinct applications range across the board from daylight/glare modeling, to HVAC
sizing, to full-building energy simulation, to thermal comfort forecasting, to embodied
carbon estimation, to structural member sizing, to envelope insulation evaluation, to
condensation risk mitigation, to acoustic modeling, to stormwater/rain collection
management (Moe 2013). The list goes on and, in order to engage the full range of
topics necessary for good environmental design, practitioners frequently find them-
selves recreating models in each of these different interfaces. As a result, designers are
typically unable to account for all of these criteria in the scope of their projects and this
additive approach of piling more tools onto the process becomes over-complicated and
inefficient.

Many have recognized this trend in recent years and have attempted to respond to
the issue. Perhaps the clearest example of this is the rise of building information
modeling (BIM), which anticipates a streamlined design process by having all design
team members put their data into a single model built with one software package
(Negendahl 2015). While such BIM models can be useful for organizing and docu-
menting final designs, their sheer size can make them inflexible and difficult to iterate
upon. The more that is added to a model, the harder it becomes to change or test out
new ideas with it. If one were to support all of the previously listed environmental
analyzes with a single central model, each model element would have a huge number
of properties and geometry types associated with it. This is because the data that is
needed for one type of study, such as energy modeling, is often very different than that
needed for another study, such as structural member sizing. So adding/changing any
given element of such a central model would either be time consuming and unfriendly

© Springer Nature Singapore Pte Ltd. 2018
K. De Rycke et al., Humanizing Digital Reality,
https://doi.org/10.1007/978-981-10-6611-5_9



94 C. Mackey and M. Sadeghipour Roudsari

to iteration or would result in messy, poor data for certain types of studies as practi-
tioners add building elements to satisfy only one objective at a time.

Accordingly, neither the disjointed set of tools nor the “one tool to rule them all” is
a suitable solution to our dilemma of software integration. As with many dualistic
situations that contrast two extremes, the best route is often a middle one that har-
moniously balances the two. So what would such a harmonious balance look like for
our problem of software integration? One might notice that both the disconnected and
the centralized approaches suffer from the same philosophical fallacy—they focus on
the tools themselves as the solution rather than the workflows or interconnection
between tools. Instead of a single all-powerful tool or a disjointed set of tools to address
our contemporary dilemma, a cohesive toolkit that seeks enhanced workflows between
software might be far more effective. Unlike the centralized method, a toolkit would
have the flexibility to engage different objectives whenever they become relevant. In
other words, one does not have to specify all properties/formats of a given building
element at once but can wait until one is ready to use the pertinent tool in the kit. Yet,
unlike the disconnected approach, the reference to tools as part of a “kit” means that
they are expected to work together in a continuous process, allowing the work done
with one tool to be cleaned, formatted, and passed onto another with minimal loss of
relevant data (Fig. 1).

This notion of a “toolkit” is arguably what has made visual programming languages
(VPLs), such as Grasshopper (McNeel and Associates 2017) and Dynamo (Autodesk
2017), so successful in addressing software integration issues in contemporary design
practice (Negendahl 2015). The fact that these VPLs break down the functions of
software into discrete “components” or “nodes,” makes them the literal embodiment of
toolkits. Each component within a VPL has its own inputs and outputs, essentially
acting as an individual tool within a larger script or workflow. As a result, users can
customize their workflows based on the arrangement of components in their scripts,
enabling them to engage different issues as they become relevant and experiment with
new creative workflows as unique situations arise on projects (Tedeschi 2014). Fur-
thermore, the ability to output data at different points along a VPL workflow allows
plugins intended for different purposes to easily pass relevant information between one
another. While VPLs are one of the more obvious examples of toolkits in contemporary

Disconnected Tools Centralized Tool Cohesive Toolkit

Fig. 1 Diagrams of software integration methods



The Tool(s) Versus The Toolkit 95

practice, the general sentiment that all software should work together can also explain
why some computer applications have integrated more successfully than others with
contemporary practice. Accordingly, with the goal of a toolkit in mind, the rest of this
article will define key guiding principles and features that make software a part of a
toolkit and therefore a particularly useful element of contemporary design processes.
These “principles of the toolkit” are derived from the author’s’ experience developing
the “Ladybug Tools” plugins (Sadeghipour Roudsari and Mackey 2017) for the
aforementioned VPL interfaces. While the authors attribute much of the success of this
project to these principles, it should be noted that not all must be fulfilled for a given
software to act as part of the toolkit and there can be multiple pathways to addressing
each principle. Ultimately, it is hoped that this list will assist both practitioners who are
seeking to identify software that can be used in their toolkits as well as software
developers looking to make their projects behave with this “toolkit” functionality.

“Do One Thing and Do It Well”

Perhaps the most important feature of any software seeking to be a part of a kit is that it
performs one task (or a few related tasks) exceptionally well. Many of us know from
experience that our most valuable and continually-used tools are often simple in pre-
sentation. For example, many attribute the early success of Google to its founding
engineers’ focus on making a fast and well-indexed search engine rather than adding
extraneous news, weather, and advertising images (Williamson 2005). The same can be
said of many plugins in software ecosystems like those surrounding Grasshopper and
Dynamo. When a large number of plugins exist within the same community, they are
often forced to focus on a particular task in order to define a niche for themselves
within their ecosystem. The more developers that there are in a given software envi-
ronment, the stronger the need to differentiate oneself and the more intense the spe-
ciation. Even Ladybug Tools, which many people see as an umbrella for several
different types of studies, has a clear boundary that defines what it does well.
Specifically, this is “analysis related to climate/weather data” and, while there are many
other tools related to good environmental design (like optimization algorithms, building
structural solvers, and tools for creating generic charts), Ladybug Tools does not
include these. Instead, if you need this functionality, we recommend that you use other
tools in your “kit” that are better suited toward these tasks, like the Octopus opti-
mization plugin (Vierlinger 2017), Kangaroo form-finding plugin (Piker 2017), or just
export your data to Excel to make some generic charts. This focus on one particular
task is essentially a software developer’s recognition of the tool’s place within a larger
toolkit. As a result, a tool that is intended to be a part of a kit follows the first tenant of
the Unix philosophy (Weber 2015), having fewer extraneous features and instead
focusing efforts on its primary stated purpose.



96 C. Mackey and M. Sadeghipour Roudsari

Build Interoperability with Other Tools

While it is important for software in a toolkit to focus on performing one task well, the
suggestion that one “use another tool in your kit” is of little help if one cannot export
one’s work to such other tools. For this reason, it is critical that any software seeking to
participate in a toolkit possess BOTH import and export capabilities to a variety of
other formats. This is particularly relevant given that many software companies prefer
to focus on importing data from a wide range of formats and neglect the development
of export functionality. This is understandably the result of traditional competitive
economics as companies feel that it is better to keep users within their own interfaces
rather than letting them export and roam to competitor software. Yet, the adherence to
this thinking often ends up hurting such software projects more than it helps since the
time that could have been spent building export capabilities is instead devoted to
adding features that mimic competitor functionality. Because such mimicked func-
tionality is usually never as good as another piece of software that is dedicated to the
task, there is a missed opportunity to add the most value to their work. This competitive
mindset also makes it important to highlight that good interoperability not only
includes the export to generic file types, like PDFs for drawings or gbXML for energy
modeling, but also allows direct export to more specific formats when possible, like
Mlustrator for drawings and OpenStudio (NREL 2017) for energy modeling. Such
direct exporting affords the smallest loss of relevant data in translation and allows the
software to perform more successfully within a broader toolkit. Understanding that this
interoperability is critical for a functioning toolkit, it is clear why plugins developed for
VPLs excel as members of toolkits. Such plugins take this concept to the extreme by
allowing any relevant data to be connected/exported from one plugin to another. Of
course, a plugin that outputs standardized data types is likely to be more successful at
achieving this interoperability and this brings us to the next guideline in the list.

Use Standardized Open Formats for Data Transfer

While interoperability with existing major software is critical for any toolkit, a good
member of a kit also anticipates its compatibility with possible future extensions of
itself and insertions of custom data at different times during its use. For this reason, the
way in which data is passed between the different utilities of a tool can be just as
important as the tool’s overall ability to export to other platforms. This is particularly
relevant as many programs use compiled proprietary file formats that are only readable
by computers and cannot be easily translated to human-readable data, such as text,
numbers, and geometry. While these compiled formats have some important uses in
compressing data, their use in proprietary schema can severely limit a tool’s ability to
be extended and to “talk” to other tools. As such, the use of open text-readable
standards like ASCII and UTF-8 greatly increases a software’s usefulness within a
toolkit. Furthermore, the use of standard file types for storing data, like CSV for tabular
data or JSON/XML for object-oriented data, also helps enable cross-compatibility.
Finally, VPL components that pass standardized text-readable streams of data between



The Tool(s) Versus The Toolkit 97

»

Fig. 2 An example of annual hourly data usage in a Ladybug visualization: the suns of a sunpath
are colored with hourly temperatures, denoting which parts of the sky should be blocked/shaded
for thermal comfort

their components will more easily facilitate integration with other plugins and data
sources. Perhaps the best example of this within Ladybug Tools is the structure used for
annual hourly data, which can originate from several sources including downloaded
climate data and annual building energy simulation results. Nearly all Ladybug visu-
alization components can accept this hourly data as an input (Fig. 2) and both the
standardization of this data across the plugin and the human-readable format of this
data are critical to the success of Ladybug Tools. Specifically, this annual hourly data is
derived from the standard format of .epw climate data and consists of a text header
followed by numerical values for every hour of a year. This simple format enables both
easy math operations to be performed on the numerical data while also providing text
instructions for the specific components that make use of it. The fact that this data is
human-readable also means that, if a user has hourly data coming from any other
source outside of the plugin (like another piece of software or recorded empirical data),
this can be directly input into Ladybug to visualize and analyze it. Other examples of
standardized, human-readable formats in Ladybug Tools include text formats borrowed
from its underlying simulations engines, like the Radiance standard for daylight
materials and the EnergyPlus standard for full-building energy materials (Fig. 3).

Modularize the Tool

The success achieved through the use of standard, text-readable formats initially
depends on a tool being modularized into discrete elements that can pass this stan-
dardized data back and forth. The more modularized that a tool is, the more locations
that exist for people to input/export custom data, build extensions on top of the tool,
and connect it to other software. From this principle, we can understand that VPL



98 C. Mackey and M. Sadeghipour Roudsari

Annual Hourly Data Format
(derived from .epw file format)
T |

Daylight Material Format
(derived from .rad file format)

Energy Material Format
ived from .idf file format)

Fig. 3 Standardized, human-readable data formats in Ladybug Tools

plugins will be more successful at integrating into toolkits if they break down their
functions into more and more components or nodes. This is something that Ladybug
Tools takes to heart since it is very rare to run an entire study with a single component.
For a daylight simulation alone, one has separate components for geometry, materials,
sky types, “recipes” (or simulation instructions), and result-processing (Fig. 4). This
modularization ultimately allows for a much higher degree of customization and
potential integration with other tools than would be possible if these processes were
wrapped in a single component. It is also important to highlight that software does not
necessarily have to exist in the form of VPL components in order for it to be modu-
larized. The vast majority of software in the world achieves a modularization by
breaking down all its capabilities into a well-documented Application Programming
Interface (API) or Software Development Kit (SDK). The most “toolkit-like” of these
APIs make use of a principle known as object-oriented programming, which essentially
divides the functions of software into several different “objects,” each with properties
that can be set and operations that can be performed on it (Kindler and Kriv 2011).
These “objects” can refer to anything and, as an example, the Rhinoceros CAD

Materials Geometry

Running Analysis

Fig. 4 Modularization of daylight simulation in Ladybug Tools



The Tool(s) Versus The Toolkit 99

software (McNeel 2017) includes several object types that one might readily recognize
(like points, curves and surfaces) as well as objects that are less obvious (like an object
for the viewport or an object for document settings). The more modularized,
object-oriented, and well-documented such APIs are, the easier it is to build extensions
off the software and connect it to other tools. Accordingly, VPL plugins that maximize
their number of components and APIs that break down software into many objects tend
to be more successful at operating within toolkit schemas. Given this principle, it is
important to recognize that, the more components or objects that a tool is broken into,
the steeper the learning curve is to mastering the software. For this reason, there is need
for one final principle of the toolkit.

Make It Easy to Start but Impossible to Master

Much like the instruments of any craftsperson, software toolkits are most successful
when there is an art to mastering them. However, if such kits are too difficult to use
from the start, new entrants can feel discouraged and will find it hard to engage. For
this reason, the most successful toolkits follow a philosophy that was perhaps best
summarized by the founder of Atari when describing their most popular video games—
they are “simple to learn but impossible to master” (Bogost 2009). Following this
mantra, the intense modularization, customizability, and exposing of options within a
toolkit must be balanced with plenty of defaults for these options. Within Ladybug
Tools, this manifests itself in the form of components that have large numbers of inputs
but only a small number of them that are actually required to run the component. For
example, the Ladybug sunpath has over 15 inputs, which allow for a high degree of
customization, yet only a single input (the location) is necessary to produce the familiar
solar graphic (Fig. 5).

This large number of defaulted inputs along with a visual standard to communicate
which inputs are required or defaulted (using dashes _before or after_ input names)
helps new users of Ladybug Tools navigate the capabilities of the software. In addition
to default values, having a low number of required components for a given operation
will further make a toolkit “easier to start.” Within Ladybug Tools, this is best illus-
trated by the fact that only three components are necessary to run a full-building energy
simulation. Yet, users can engage with over 100 other components in order to add
meaningful aspects to this energy simulation (like window geometries, wall/window
constructions, and energy-saving strategies like natural ventilation, shade, and
heating/cooling efficiency upgrades). Structuring software like this enables new
entrants to rapidly arrive at a tangible results and, with an understanding that these
quickly-achieved results are far from perfect, users will be inspired to delve further into
the toolkit. If done well, new entrants will find themselves quickly advancing through
the kit and educating themselves as they go. Together, this forms a community of
masters, new entrants, and many in between, who can help each other reach deeper into
the kit through online discussion forums (Fig. 6). Eventually, masterful users may find
a route all of the way to the core functions of the software and it is for this reason that
many of the software packages that are most devoted to the notion of a toolkit are also



100 C. Mackey and M. Sadeghipour Roudsari

Required Input
—_—

Inputs for q
Customization ¢

Fig. 5 One required input at over fifteen

narth_ readiel b
lecation SUVeen 5
sunAltitudes D
RIE sunAzimuths. 2

_day_
_month_ o ’
imoStep.. sunSpheresMesh D
analysisPeriod_ SUPARCIYS b
compassCvs b
_centerf'l_ altitudeCrys. b
sunPathScale () legend 3
sunscale legendBasePls )
-prajectian._ Ttitle A
"""""""" ttloBasoPt 5

annualHourlyData_
conditionalStatement
legendPar_

sunPathCenPls D

sunPositions 2

Fig. 6 Snapshot of activity on the Ladybug Tools community forum (2017)



The Tool(s) Versus The Toolkit 101

open source. Allowing everyone to view a tool’s source code is an invitation for people
to master it and, while not all software needs to be open source to participate in a
toolkit, one can typically use this to identify software that intends to be participate as
such.

By following the principles listed above, software can better meet the needs of
today’s architectural practice by enabling BOTH the flexibility to engage different
iterative studies AND the integration that is needed to make coherent, coordinated
designs. When we look at many of our buildings today, they increasingly resemble
complicated collections of separate systems—structure, envelope, air conditioning, fire
protection, electrical, interior furnishings, etc. In this separation of systems, we
increasingly overlook opportunities for synergies between them, such as when part of
the envelope can act as a structural system. This separation can also lead to misin-
formed decisions, such as removing exterior shade to save construction costs only to
pay for it in a larger air conditioning system that can remove the higher solar gain.
These missed opportunities are a direct result of our design thinking that is shaped by
poorly integrated tools. If we are to have elegant, coherent building designs in this
contemporary era, we must first address these underlying issues in our design work-
flows. By moving toward software toolkits instead of disconnected or centralized tools,
our vision of elegant designs can more quickly become the reality around us.

References

Autodesk: Dynamo. http://www.dynamobim.org (2017)

Bogost, I.: Persuasive Games: Familiarity, Habituation, and Catchiness. Gamasutra (2009)

Kindler, E., Krivy, I.: Object-oriented simulation of systems with sophisticated control. Int.
J. General Syst. 313-343 (2011)

McNeel, R., & Associates: Grasshopper. Algorithmic modeling for Rhino. http://www.
grasshopper3d.com/ (2017)

Moe, K.: Convergence: An Architectural Agenda for Energy. Routledge (2013)

National Renewable Energy Laboratory (NREL): OpenStudio. https://www.openstudio.net/
(2017)

Negendahl, K.: Building performance simulation in early design stage: an introduction to
integrated dynamic models. Autom. Constr. 54, 39-53 (2015)

Piker, D.: Kangaroo. http://kangaroo3d.com/ (2017)

Sadeghipour Roudsari, M., Mackey, C.: Ladybug tools. http://www.ladybug.tools/ (2017)

Tedeschi, A.: AAD Algorithms-Aided Design. Parametric Strategies Using Grasshopper.
Edizioni Le Penseur (2014)

Vierlinger, R.: Octopus. http://www.food4rhino.com/app/octopus/ (2017)

Weber, S.: The Success of Open Source. Harvard University Press (2005)

Williamson, A.: An evening with Google’s Marissa Mayer (2005)


http://www.dynamobim.org
http://www.grasshopper3d.com/
http://www.grasshopper3d.com/
https://www.openstudio.net/
http://kangaroo3d.com/
http://www.ladybug.tools/
http://www.food4rhino.com/app/octopus/

	The Tool(s) Versus The Toolkit
	“Do One Thing and Do It Well”
	Build Interoperability with Other Tools
	Use Standardized Open Formats for Data Transfer
	Modularize the Tool
	Make It Easy to Start but Impossible to Master
	References


